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The coherent structure in the near-field of an axisymmetric turbulent jet at a Reynolds
number of 3.8 × 105 and Mach number of 0.3 is experimentally characterized
by a vector implementation of the proper orthogonal decomposition (POD). The
POD eigenfunctions and associated eigenvalues are extracted at several selected
streamwise locations in the initial region. The focus on the near-field is motivated
by its importance in numerous technical applications. Results show a rapid energy
convergence with POD mode number. Examination of the relative energy contained
in the combined azimuthal and radial components of the POD modes reveals that
it is comparable to that in the streamwise component. The streamwise evolution of
the eigenvalue spectra is characterized by a remarkable variation in the azimuthal
mode number energy distribution, leading to the dominance of azimuthal mode m =1
beyond the end of the jet core. In contrast, a scalar implementation using only the
streamwise component shows the dominance of mode m =2 which is consistent with
previous scalar implementations of the POD. For a given azimuthal mode number, the
eigenvalue spectra exhibit a broad peak which occurs at a constant value of Strouhal
number based on local shear layer momentum thickness and local jet maximum
velocity. The phase information required for a local reconstruction of the jet structure
is obtained by projecting the POD eigenmodes onto instantaneous realizations of
the flow at fixed streamwise locations. The instantaneous realizations are obtained
by utilizing cross-stream arrays of multi-sensor probes in conjunction with linear
stochastic estimation (LSE). Results clearly show the local dynamic behaviour of
each component of the jet structure.

1. Introduction
1.1. Motivation and background

In this paper the large-scale structure in the near field of a high-Reynolds-
number axisymmetric jet is studied experimentally by an implementation of the
proper orthogonal decomposition (POD) which utilizes all three fluctuating velocity
components. As was the case in Gordeyev & Thomas (2000), a summation of
the most energetic POD modes is considered synonymous with the term ‘large-
scale structure’. This work is focused on extracting POD eigenfunctions and their
associated eigenvalues at selected streamwise locations throughout the jet initial
region. The focus on the near field of the axisymmetric jet is motivated by its
importance in many technical applications such as propulsion systems, chemical
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mixers and jet noise. For example, one application of considerable interest involves the
identification, characterization and control of coherent structures in high-bypass-ratio
aircraft engines for the purpose of noise reduction. A more complete understanding
of the large-scale structure in the simpler axisymmetric jet shear layer investigated
here is prerequisite to achieving this goal in the multiple-shear-layer engine flow.

Numerous experiments have shown that the near-field evolution of the axisymmetric
jet is a consequence of large-scale, spatially coherent vortical motions which are
initiated via an inviscid, inflectional instability mechanism. These coherent structures
play an important role in determining macro-characteristics of the flow such as mean
mass, momentum and scalar transport as well as aerodynamic noise generation. A
review of early attempts to characterize the coherent motions in the near field of the
axisymmetric jet is presented in Thomas (1991) and Bonnet & Delville (2001).

Bonnet & Delville (1996) provide a comprehensive review of a variety of
experimental techniques that have been developed in order to extract coherent
structures from turbulent shear flows. So-called conditional techniques involve
sampling the flow only during those time intervals in which a dynamically significant
event that is associated with the coherent structure is occurring. While useful, such
techniques may suffer from a lack of objectivity in the sense that one must have a
predetermined notion of the structure topology and its effect on the instantaneous flow.
In contrast, the proper orthogonal decomposition (POD) proposed by Lumley (1967,
1970) for the investigation of inhomogeneous turbulent shear flows is an example of
a non-conditional technique that is based on the two-point velocity correlation. The
mathematical basis of the POD is the Karhunen–Loéve expansion as described in
Karhunen (1946) and Loéve (1955). The analysis of turbulent shear flows by the POD
is the subject of a comprehensive review by Berkooz, Holmes & Lumley (1993) and
the monograph by Holmes, Lumley & Berkooz (1996). The POD objectively extracts
a complete, orthogonal set of spatial eigenfunctions (i.e. ‘modes’) from the measured
second-order correlation function. These POD eigenmodes provide an optimal basis
for expansion of the flow in the sense that energy convergence is more rapid than
for any other basis. It is reasonable, therefore, to associate a summation of the most
energetic POD modes with the large-scale, energy-containing structure in the jet.

As pointed out by Lumley (1967, 1970), the POD eigenfunctions are known
only to within an arbitrary function of phase. The phase information required for
reconstruction of the coherent structure in physical space is obtained by projection
of the POD modes back onto instantaneous realizations of the flow field. This allows
temporal phase coefficients for each mode to be determined. These phase coefficients
embody the mode’s dynamic behaviour. In order to preserve phase information in an
experimental context, rakes or meshes containing multiple synchronized probes are
typically utilized. A very useful review of such multi-point measurement techniques
in turbulent flow is presented by Glauser & George (1992). Alternatively, Galerkin
projection of the dominant POD modes onto the appropriately simplified version
of the Navier–Stokes equations for the flow provides a finite system of ODEs that
allows the flow field dynamics to be examined within the framework of well-defined
dynamical systems and bifurcation theory. Examples of this approach are Aubry
et al. (1988) in the near-wall turbulent boundary layer and Ukeiley et al. (2001) in
the planar mixing layer.

While this investigation is certainly not the first to apply the POD to characterize
axisymmetric turbulent jet flow structure, it is the first to report a full vector
implementation utilizing all three fluctuating velocity components. Comparison of the
results of the current study to previous scalar implementations will reveal significant
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differences in the underlying flow physics. A brief review of previous POD work in the
axisymmetric jet follows and will provide the framework in which the contributions
of the current work may be placed.

1.2. Previous applications of the POD in the axisymmetric jet

The first implementation of the POD in the near field of an axisymmetric jet is
reported by Glauser, Leib & George (1987). Seven single-sensor hot-wires aligned in
the radial direction were used to obtain cross-spectra between measured streamwise
fluctuating velocity components at a location three nozzle diameters downstream of
the jet exit. This scalar implementation of the POD demonstrated a rapid energy
convergence with mode number. The first POD mode was found to contain nearly
40 % of the turbulent energy, whereas the first three POD modes captured nearly
all the resolved turbulent kinetic energy. This work was subsequently extended by
Glauser & George (1987) by adding a second rake of seven straight wires at the same
streamwise location that permitted obtaining cross-spectra involving both radial and
azimuthal probe separations. The second rake was sequentially positioned azimuthally
relative to the stationary rake in 12o increments. The authors examined the energy
contained in the first POD mode for azimuthal mode number m =0 relative to that in
all combined azimuthal modes in order to determine whether the axisymmetric mode
is dominant. They found that this energy ratio was approximately 0.23 suggesting that
a few higher azimuthal modes should be included in the definition of the coherent
structure. A conceptual model for turbulence production in the axisymmetric shear
layer was described by Glauser (1987) which involves the interaction between two
adjacent vortex ring structures shed from the nozzle lip.

In a different implementation of the POD, Arndt, Long & Glauser (1997)
demonstrate that the fluctuating pressure signal measured at the outer edge of the
axisymmetric jet is hydrodynamic in nature and can be used to infer large-scale flow
structure embedded within the jet. Using multiple microphones positioned at the edge
of the jet and separated in the streamwise direction, they present a unique scalar
implementation of the POD based on measured pressure fluctuations. In contrast to
the previously cited studies, the streamwise coordinate was treated as inhomogeneous.
It was found that the phase speed of each POD eigenmode is 0.58 Uj . Using the
shot-noise decomposition, dynamic events such as vortex pairings and triplings were
inferred.

In an effort to examine the dynamics of the axisymmetric jet shear layer and thereby
complement the earlier results of Glauser (1987), Citriniti & George (2000) used a
polar array of 138 synchronized straight wire probes (only the streamwise velocity
component was measured) at a fixed location three diameters downstream of the
nozzle exit. The array was used to acquire simultaneous single-component realizations
of the flow at multiple locations in the r–θ crossflow plane onto which the POD
eigenfunction basis was projected. In this manner the local temporal dynamics of the
flow field was obtained. It was shown that only five azimuthal modes (m = 0, 3, 4, 5, 6)
are required to faithfully represent the local dynamics of the large-scale structure.
The study showed that the local jet structure is characterized by azimuthally coherent
‘volcano-like’ events near the jet potential core. Evidence was also found that suggested
the presence of streamwise-aligned, counter-rotating vortices connecting the adjacent
azimuthally coherent structures.

Extending previous POD work to the compressible axisymmetric jet, Ukeiley &
Seiner (1998) were the first to examine the streamwise evolution of POD eigenspectra.
Their investigation focused on the streamwise range of 4 � x/D � 12 in a jet with
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Mach number M = 0.85. That study was motivated, in part, by a desire to explore the
mechanism of subsonic jet noise production. The authors used a rake of six X-wires
aligned in the radial direction at a single azimuthal location and obtained cross-
spectra involving both the streamwise and radial fluctuating velocity components.
As was the case in previous low-speed jet studies, the first POD mode captured
approximately 40 % of the resolved kinetic energy while the first five modes captured
almost 90 %. Ukeiley, Seiner & Ponton (1999) subsequently extended the previously
cited study by adding a second rake of X-wires for computing cross-spectra between
the streamwise and radial fluctuating components in the r − θ cross-stream plane. In
this manner the azimuthal dependence of the POD eigenspectra were also obtained.
Three Mach numbers were considered (M = 0.3, 0.6, 0.85) though results were only
presented for M =0.3 and M = 0.6. It was found that the azimuthal mode m = 7
dominates the flow field at x/D = 4, whereas this peak shifts towards lower azimuthal
mode number (m =4) as the jet approaches x/D =8. Comparison of results for the
two cases presented showed no strong Mach-number dependence.

Jung, Gamard & George (2004) and Gamard, Jung & George (2004) used essentially
the same hot-wire array as Citriniti & George (2000) to investigate the evolution
of modal energy content in the near field of the jet over the streamwise range
2 � x/D � 6 and in the far field (20 � x/D � 69). As in the work by Citriniti &
George only the streamwise-fluctuating component was measured. The experiments
showed that the POD eigenspectra varied significantly in the downstream direction.
They demonstrated a progressive shift of the dominant azimuthal mode from m = 0
at x/D = 3 to azimuthal mode m =2 by x/D = 6. In the far field of the axisymmetric
jet (x/D = 20 to 69) they showed that the azimuthal mode m =2 continues to
dominate the flow in apparent contradiction to the widely held belief that azimuthal
mode m =1 should be dominant (e.g. Cohen & Wygnanski, 1987). The authors
also demonstrate that the properly normalized eigenspectra do not depend on the
downstream distance in the similarity region. This is analogous to the self-similar
scaling of POD eigenfunctions and eigenvalues observed in the far field of the planar
jet by Gordeyev & Thomas (2000).

1.3. Objectives

The objective of the present investigation is to experimentally characterize the coherent
structure in the near field of a high-Reynolds-number axisymmetric jet via a full, three-
component implementation of the POD. The POD eigenfunctions and associated
eigenvalues are experimentally extracted in a manner similar to that employed by
Delville et al. (1999) in the planar mixing layer and Gordeyev & Thomas (2000) in the
planar jet. This will provide an objective description of the time-averaged coherent
structure in the axisymmetric jet flow field in a mixed Fourier–physical domain. In
order to examine the jet coherent structure in physical space, the POD eigenfunctions
are subsequently projected onto instantaneous cross-stream realizations of the jet flow
field obtained at several selected streamwise locations by following the procedure of
Gordeyev & Thomas (2002). The realizations used for the POD projection are acquired
by means of a sparse cross-stream array of X-wires used in conjunction with the linear
stochastic estimation (LSE) technique. The remainder of the paper is organized as
follows. In § 2 the experimental facility is described and the axisymmetric jet flow field
validated. In § 3 the experimental implementation of the POD is described. Results
characterizing the streamwise evolution of the jet large-scale structure are presented
in § 4. Finally, the results are summarized and compared with earlier studies in the
discussion of § 5.
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Figure 1. Schematic of the high-speed jet facility.

2. Experimental facility and basic flow field characteristics
2.1. Jet flow field facility

The experimental facility is shown schematically in figure 1. Readers interested in
details of the facility are referred to Iqbal (2006). Here only essential aspects are
provided.

The facility is of the blowdown type and jet flow is initiated by opening a
pneumatically controlled gate valve. During tank discharge, the stagnation pressure
in the plenum chamber upstream of the nozzle assembly is maintained at a constant,
preset value by a pressure controller with pneumatic feedback control. The pressure
controller maintains the plenum pressure to within ±0.5 % of the preset value. The
plenum chamber is lined with acoustic absorbent foam in order to minimize the
propagation of noise from upstream piping to the jet nozzle assembly.

The jet discharges from an axisymmetric nozzle with fifth-order polynomial wall
contour and zero-derivative end conditions. The exit diameter of the nozzle is
D = 5.06 cm. The facility is capable of producing a steady, heated air jet with core
turbulence intensity levels of less than urms/Uj < 0.1 % (where the subscript rms
denotes a root-mean-square value) and exit Mach numbers of up to 1.0. For the exit
Mach number M =0.3 used for this study, the system is capable of providing a run
time of approximately 25 min.

The flow discharges from the nozzle exit into a large anechoic chamber which
provides an anechoic free-field environment with a demonstrated low-frequency cutoff
of approximately 400 Hz (see Walker & Thomas 1997). Although not the focus of
this paper, the chamber is sufficiently large to make both near-and far-field acoustic
measurements. An additional advantage of performing the flow field measurements in
the anechoic chamber is the elimination of unintentional facility-dependent acoustic
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Figure 2. Schematic of the axisymmetric nozzle and upstream attachments.

forcing due to propagation of reflected sound waves to the nozzle lip. Owing to
the long acoustic wavelengths in relation to the jet diameter, such forcing will be
azimuthally coherent at the jet lip and can therefore excite the axisymmetric mode
(see Gutmark & Ho 1983 and Tam 1986). More will be said of this in the results
section. It should also be noted that care was taken in the design of the anechoic
chamber to avoid any significant overpressure by venting sufficient flow to the outside.

In this paper x will denote the streamwise spatial coordinate, which is typically
made non-dimensional by nozzle exit diameter D. The other two spatial coordinates
for the flow are in the radial, r , and azimuthal, θ , directions. The origin of the
coordinate axes is chosen to be the centre point of the nozzle exit plane as shown in
figure 2. The velocity components corresponding to the x, r, θ coordinates are denoted
as u, v, and w, respectively.

2.2. Characterization of the basic flow field

Unless otherwise noted, for the measurements presented in this study, the jet facility
was operated with a nozzle exit velocity of Uj =110 m s−1 which corresponds to
an exit Mach number of M = 0.3 and a Reynolds number, ReD =380 000 (based
on nozzle exit diameter). The jet was not heated. Figure 3 presents measured jet
mean velocity profiles obtained at several streamwise locations. The mean streamwise
velocity, U , is normalized by the local maximum velocity Umax(x/D) and is plotted
against the radial coordinate r normalized by local jet mean velocity half-width,
b(x). The half-width is defined as the radial location at which the local jet mean
velocity falls to one-half its centreline value. This figure shows that the mean velocity
profile initially possesses a ‘top-hat’ shape which is indicative of a uniform potential
core flow bounded by a thin axisymmetric shear layer. The initial jet shear layer
momentum thickness was determined to be θ0 = 0.051 mm, or θ0/D = 0.001. The
mean velocity variation across the shear layer is approximated well by a hyperbolic
tangent profile shape. The jet shear layer widens with streamwise distance and engulfs
the irrotational core flow near x/D = 5.0. Figure 3 shows that the jet mean velocity
profile subsequently approaches a state of mean velocity similarity by x/D = 8.0.
Figure 4 summarizes the streamwise evolution of both the jet width, 2b(x)/D, and
the centreline mean velocity, Umax/Uj . The jet centreline mean velocity is nearly
constant until the end of the jet potential core near x/D =5.0 but decays farther
downstream. Measurements show an apparent asymptotic mean velocity decay rate
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Figure 3. Scaled jet mean velocity profiles at several streamwise locations.
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given by (Umax/Uj ) = 5.9/(x/D − 0.4). The jet spreading rate is initially small but
approaches an asymptotic value of d(2b/D)/d(x/D) = 0.1 beyond the tip of the jet
core. As shown in figure 4, these values are in excellent agreement with the results
obtained in other axisymmetric jet facilities by Zaman & Hussain (1980), Crow &
Champagne (1971), and Hussein, Capp & George (1994).

It is well-known that profiles of second-order turbulence statistics generally require
longer streamwise distances to exhibit similarity than does the mean flow (e.g.
Wygnanski & Fiedler 1969 and Gutmark & Wygnanski 1976). This is observed
in the streamwise-component turbulence intensity profiles obtained at representative
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x/D locations as shown in figure 5. No collapse of the scaled r.m.s. velocity profiles
is observed. Figure 6(a) presents the streamwise evolution of both the jet centreline
turbulence intensity urms |r=0/Umax and that obtained in the middle of the jet shear
layer (r/b = 1). Figure 6(b) presents the same centreline and shear layer urms scaled
with the jet exit velocity, Uj . This figure shows that in the shear layer (r/b = 1),
urms/Uj saturates near x/D =3.5 and near x/D = 8.5 on the jet centreline. These
measurements are in good general agreement with the above-cited experiments.

Standard fast Fourier analysis techniques were used to characterize the spectral
content of streamwise velocity fluctuations in the jet. The spectra shown in figure 7
are ensemble averaged over 200 blocks with N =2048 points per block with a Nyquist
frequency of 5 kHz. Figure 7 presents u-component autospectra obtained on the jet
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centreline at several x/D locations upstream of the tip of the jet core. Here the
frequency is expressed in terms of the Strouhal number, StD = f D/Uj . As shown in
figure 7, the spectra each exhibit a well-defined peak near StD = 0.42–0.45 which is a
manifestation of the jet column instability. As noted by Thomas (1991), StD values
reported in the literature vary widely (0.25–0.85). However, as noted by Kibens (1981),
for D/2θ0 > 120, StD is nearly constant with a value of approximately StD ≈ 0.44. In
the current study, D/2θ0 = 496.

Autospectra were also obtained in the axisymmetric jet shear layer in order to
characterize the development of the shear layer instability frequency. For these
measurements the Nyquist frequency was increased to 50 kHz. Block size and the
number of ensembles were 2048 and 400, respectively. The shear layer spectra were
acquired at several streamwise locations, each at a radial location where the r.m.s.
of the streamwise fluctuating velocity reaches a local maximum. Representative shear
layer spectra are plotted in figure 8. As indicated, the fundamental shear layer
instability frequency occurs at a Strouhal number (based on initial shear layer
momentum thickness) of Stθ0

= 0.0126. This value compares well with the results
of Zaman & Hussain (1981) and Drubka (1981) who measured values of 0.012 and
0.013, respectively. This confirms that the nascent jet facility is quite ‘clean’ in terms
of being free from facility-dependent forcing of the shear layer. The fundamental
instability is observed to saturate by x/D =0.1 and this corresponds to approximately
2.4 fundamental instability wavelengths downstream of the nozzle exit. Soon after
that, a broad subharmonic peak grows and overtakes the fundamental. This is
a manifestation of a parametric resonance with the mean flow as described by
Monkewitz (1988) and Ho & Huang (1982). As expected, the subharmonic dominates
the shear layer spectrum at x/D = 0.11 as shown in figure 8.

From shear layer spectra measured farther downstream (not presented here) it was
noted that for x/D > 1.75 the spectral distributions were completely broadband with
a well defined −5/3 roll-off suggesting establishment of turbulent flow conditions.
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Hence one may safely conclude that by the first POD measurement station (x/D = 3)
the jet shear layer was fully turbulent.

2.3. Multi-point velocity measurements

As described in detail in a subsequent section, the experimental implementation of
the POD requires the measurement of the velocity cross-correlation tensor at selected
x/D locations. The cross-correlation tensor for a fixed x-location is defined as

Rαβ(r, r
′, θ, θ ′, t, t ′) = 〈uα(r, θ, t)uβ(r

′, θ ′, t ′)〉, (2.1)

where 〈.〉 denotes an ensemble average and Greek subscripts (α and β) denote
fluctuating velocity components u, v, or w. The process of obtaining the cross-
correlation tensor is expedited by the use of cross-stream rakes of X-wire probes
which allow one to simultaneously acquire velocity–time histories at multiple cross-
stream locations. Probe locations at the first and second rake are denoted as (r, θ)
and (r ′, θ ′), respectively, as shown in figure 9 which provides a schematic of the rake
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geometry. Hence the velocity measurement uα(r, θ, t) corresponds to the α component
at the first rake and uβ(r

′, θ ′, t) corresponds to the β component at the second
rake. Note that the X-wire probes are capable of measuring either (α = u, β = v) or
(α = u, β = w) simultaneously depending upon the orientation of the probe sensors.
Because the flow is stationary in time, t , and is assumed homogeneous in the azimuthal
direction, θ , the cross-correlation matrix Rαβ(r, r

′, θ, θ ′, t, t ′) actually depends only on
the relative coordinates �θ ≡ θ − θ ′ and τ ≡ t − t ′.

Figure 9 shows both a schematic of the cross-stream measurement grid and
a corresponding photograph of one of the two rake set-ups used for the POD
measurements. Fourteen miniature X-wire probes fabricated by Auspex Corporation
(type AHWX-100) are used. These X-wire probes have a 0.9 mm spacing between
the two probe sensors and a sensor wire length of 0.8 mm. There are seven probes
in each rake, equally spaced radially, with one rake fixed and the other moveable in
the azimuthal direction. The pivot point of the moveable rake is positioned at the
centreline of the jet, i.e. at r = 0. The radial separation of the probes on each rake
is �r =0.635 cm. Depending upon which twin rake set-up was used, the moveable
rake was positioned at intervals of either �θ = 15◦ or �θ = 7.5◦ in order to form the
measurement grid shown in figure 9. The rake assembly is mounted on a table with
a provision to position it at streamwise locations given by 3.0 � x/D � 12.

The required 28-channels of constant-temperature hot-wire anemometry and
associated anti-alias filters were fabricated in-house. The dynamic response of the
transducers was found to be flat to 50 kHz. The anti-alias filtered output voltages
from the hot-wire sensors were simultaneously sampled and digitized by means of a
36-channel data acquisition system made by MicroStar Laboratories (data acquisition
processor DAP 3400a and simultaneous sampling board MSXB028). This system is
capable of simultaneously sampling the 28 hot-wire output voltages at rates up to 50
kHz with no detectable phase lag between the channels. Additional input channels are
used to record the instantaneous jet exit velocity and temperature from a differential
pressure transducer and thermocouple, respectively. The digital data are logged to an
internal drive in binary format on a laboratory personal computer for post-processing.

The X-wires were calibrated in the axisymmetric jet facility by means of a removable
rotating table which simultaneously placed all of the X-wires into the potential core
near the nozzle exit of the round jet. The table pivots the probes about an axis
passing through the centre of each X-wire array and thereby allows one to set a given
yaw angle between the probe axis and the oncoming uniform flow. Since density
fluctuations were negligible, the probes were calibrated directly in terms of velocity.
During calibration the speed of the jet was set to six different values within the
range from 0 to 135 m s−1 (the upper value corresponds to M =0.4) as measured by
a Pitot probe connected to a differential pressure transducer. The X-wire probe angle
with respect to the oncoming flow was set to eleven different values within the range
of −45◦ to +45◦. The anemometer bridge voltage from each hot-wire sensor was
recorded for each velocity–flow angle combination. These data were used to create
a look-up table to compute velocity vectors from the voltages measured during the
experiment. The look-up table procedure used in this study is similar to that described
in Chu (1993), Ukeiley & Glauser (1995) and Gordeyev & Thomas (2000).

Alignment of the rake arrangement with respect to the axis of the jet is obviously
important for proper characterization of the jet POD modes. It was also important
to verify that the jet developed symmetrically in θ . It is clear from measurements
like those shown in figures 3 and 5 that the jet development is radially symmetric. In
addition, azimuthal symmetry was examined by considering the azimuthal variation



292 M. O. Iqbal and F. O. Thomas

0 0.5 1.0 1.5 2.0 2.5

0.05

0.10

0.15

x/D = 4 x/D = 8

0 1 2

0.05

0.10

0.15

0 0.5 1.0 1.5 2.0 2.5

0.05

0.10

0.15

0 1 2

0.05

0.10

0.15

0 0.5 1.0 1.5 2.0 2.5

0.05

0.10

0.15

r/R r/R
0 0.5 1.0 1.5 2.0 2.5

0.05

0.10

0.15

urms

Umax

vrms

Umax

wrms

Umax

Figure 10. Comparison of r.m.s. fluctuating velocity at x/D = 4 and 8: �, the current
rake-based data; *, the data obtained by traversing a single X-wire probe; � data reported by
Bradshaw et al. (1964).

of the mean streamwise velocity component, U (r, θ) and the normal turbulent
stresses, 〈u2〉, 〈v2〉, and 〈w2〉 as obtained with the rake arrangement at representative
radial locations in the (r, θ)-plane and for 0 � θ � 2π. The measurements were
performed for 3 � x/D � 12. Results clearly showed that both the mean flow and
normal turbulent stress components exhibited complete azimuthal symmetry at each
streamwise location. This ensured that the proper alignment of the rake arrangement
with the jet axis had been achieved.

In order to ensure that the presence of the rake arrangement does not adversely
affect measurements made in the jet, a quantitative comparison is made between
cross-stream profiles of all three r.m.s. fluctuating velocity components obtained with
the rake-arrangement shown in figure 9 and by traversing a single multi-sensor
probe across the jet under identical experimental conditions. Figure 10 presents
the comparison of cross-stream profiles of the three r.m.s. turbulence intensity
components. The radial coordinate is normalized by the nozzle radius, R. The
comparison is shown at two representative streamwise locations. At x/D = 4 the
current measurements are also compared with the published data obtained by
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Bradshaw, Ferriss & Johnson (1964) under similar experimental conditions but in a
different facility. The agreement between the current measurements utilizing the rake
and the traverse of a single multi-sensor probe confirms that the rake has no significant
effect on the fluctuating velocity measurements. Comparison to the measurements of
Bradshaw et al. (1964) serves to further validate the three-component turbulence data
obtained from the jet flow field facility.

3. Experimental implementation of the POD
In this section, the experimental procedure by which the POD eigenmodes and

eigenvalues are obtained from the axisymmetric jet flow is described. The method is
similar in approach to that successfully implemented by Delville et al. (1999) in the
planar mixing layer and by Gordeyev & Thomas (2000) in the planar jet.

3.1. Basic procedure

As described previously, the twin rake arrangement of X-wires shown in figure 9
is used to acquire the fluctuating velocity uα(r, θ, t). Since time is a homogeneous
coordinate, the cross-spectral matrix, Sαβ(r, r

′, �θ, f ) may be obtained from a
temporal Fourier transform of the velocity correlation matrix Rαβ ,

Sαβ(r, r
′, �θ, f ) =

∫
Rαβ(r, r

′, �θ, τ )e−2πif τdτ (3.1)

Alternatively, the cross-spectral matrix Sαβ(r, r
′, �θ, f ) may be obtained directly from

Fourier transformation of the individual velocity–time histories as described in Bendat
& Piersol (1986), and this is the approach taken in this investigation. This gives the
equivalent relation,

Sαβ(r, r
′, �θ, f ) = lim

T →∞

1

T
〈û∗

α(r, θ, f )ûβ(r
′, θ + �θ, f )〉, (3.2)

where ûα(r, θ, f ) ≡
∫ T

0
uα(r, θ, t) exp(−2πif t) dt denotes Fourier transformation of the

velocity vector for each block, T is the total time duration of the data block and
the asterisk denotes a complex conjugate. A spatial Fourier transformation of the
cross-spectral matrix/tensor in the homogeneous θ-direction provides an azimuthal
mode number, m, dependent cross-spectral matrix given by:

Φαβ(r, r
′, f, m) =

∫
Sαβ(r, r

′, f, �θ)eim�θ d(�θ). (3.3)

As shown in Lumley (1970), the spectral correlation tensor Φαβ(r, r
′; f, m) is a kernel

in the integral equation to find the POD modes for different frequencies f , and
azimuthal mode numbers, m,∫

Φαβ(r, r
′; m, f )ϕ(n)

β (r ′; m, f )r ′ dr ′ = λ(n)(m, f )ϕ(n)
α (r; m, f ). (3.4)

Here superscript n denotes POD mode number. The solution of (3.4) gives a
complete set of orthonormal eigenfunctions ϕ(n)

α (r; m, f ) with corresponding positive
eigenspectra λ(n)(m, f ). Any local velocity realization can be represented as a sum of
the eigenfunctions,

uα(r, θ, t) =

∞∑
n=1

∞∑
m=0

∫
a(n)(m, f )ϕ(n)

α (r; m, f ) exp(2πif t) exp(imθ) df. (3.5)
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In (3.5) the coefficients a(n)(m, f ) are obtained by projection of the eigenmodes onto
individual realizations of the flow field. The spectral correlation tensor Φαβ(r, r

′; m, f )
can be expanded as

Φαβ(r, r
′; m, f ) =

∞∑
n=1

λ(n)(m, f )ϕ(n)
α (r; m, f )

{
ϕ

(n)
β (r ′; m, f )

}∗
. (3.6)

The eigenspectra λ(n)(m, f ) represent the energy distribution in frequency–azimuthal
mode number space for each of the extracted POD modes. From the above discussion,
it is apparent that the problem of finding the POD modes is reduced to solving a
number of integral equations (3.4) with m and f as parameters.

In order to extract the POD modes, all components of the Φαβ-matrix must be
obtained. Unfortunately, the term Φwv cannot be measured directly using the X-wire
rakes. However, it can be obtained from mass conservation requirements using a
procedure originally described in Ukeiley & Glauser (1995) and Ukeiley et al. (2001).
A Fourier transform of the mass conservation equation gives

∂û(r, θ, f )

∂x
+

1

r

∂(rv̂(r, θ, f ))

∂r
+

1

r

∂ŵ(r, θ, f )

∂θ
= 0. (3.7)

In order to estimate the streamwise derivative, a Taylor’s frozen field approximation is
used. This assumes a constant convective speed of the flow structure at a given cross-
section in the jet. Numerous experiments (e.g. Bradshaw et al.; 1964, Davies, Ko &
Bose 1967; Arndt et al. 1997) have indicated that the large-scale jet structure convects
at approximately 60 % of the local jet centreline mean velocity (Uc ≈ 0.6Umax). After
applying the constant convective speed hypothesis in the x-direction one obtains

∂

∂x
= − 1

Uc

∂

∂t
= −2πif

1

Uc

= ikx (3.8)

The complex conjugate of (3.7) is and is subsequently multiplied by v̂(r ′, θ ′, f ) and
an average is taken over multiple ensembles. After performing a spatial Fourier
transform in the θ-direction, equation (3.7) can be rewritten in terms of Φαv as

ikxΦuv +
1

r

∂(rΦvv)

∂r
+ i

m

r
Φwv = 0. (3.9)

From the above relation, Φwv can be easily calculated. The remaining terms Φvu, Φwu

and Φvw can be found using the property that the Φ-matrix is Hermitian,

Φαβ(r, r
′; m, f ) = Φ∗

βα(r
′, r; m, f ). (3.10)

All the required S-matrix measurements are performed over half of the (r, θ)-plane,
i.e. for �θ = 0 . . . π with values for �θ = 0 . . . 2π obtained by exploiting the symmetry
property in the θ-direction, θ → −θ, u → u, v → v, w → −w, which gives the following
symmetry relations for the S-matrix components

Sαβ(r, r
′, 2π − �θ, f ) =

{
−Sαβ(r, r

′, �θ, f ), α = w, or β = w

+Sαβ(r, r
′, �θ, f ), otherwise.

3.2. Numerical implementation

Since the acquired velocity time-series are discrete in both time and space, careful
consideration must be given to the minimization of temporal and spatial aliasing and
this is described in some detail in the Appendix. There it is shown that a 10 kHz
Nyquist frequency (i.e. 20 kHz sample frequency) combined with the use of anti-alias
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filters both prevented temporal aliasing and provided more than sufficient bandwidth
for the cross-spectral measurements.

The experiments were first performed with �θ = 15◦ which allows resolution of
azimuthal mode numbers m = 0 . . . 11. In order to assess the degree of spatial
aliasing of azimuthal modes, the experiments were subsequently repeated at selected
streamwise locations with �θ = 7.5◦ corresponding to resolved azimuthal mode
numbers m =0 . . . 23. Comparison of the POD results showed that only comparatively
low-energy azimuthal modes m � 7 exhibited aliasing. More importantly, the most
energetic azimuthal mode numbers which form a focus of this study are virtually
identical. In this paper results from both experiments are compared at representative
locations.

In order to ensure stationary cross-spectral statistics, convergence tests were
performed. For all radial and streamwise locations, sampling fluctuating velocity
in blocks Np = 1024 points for a total of Nb = 400 blocks yielded fully converged
cross-spectral statistics.

A fast Fourier transform (Bendat & Piersol 1986) of the discrete velocity fluctuation
time-series (with a Hanning window to suppress side-lobe spectral leakage) is used
to compute the Fourier transform of the velocity components and thus obtain the
Sαβ(r, r

′, �θ, f )-matrix (3.2). A discrete Fourier transform of the S-matrix in the
azimuthal θ-direction is used to calculate the Φαβ(r, r

′, f, m)-matrix.

3.2.1. Calculation of the POD eigenmodes

At a fixed x/D location Φαβ is known at a finite number of positions across the
jet {ri, θj }, i = 1, . . . , Nr , j = 1 . . . Nθ where Nr = 7 is the number of X-wire probes
in one rake and Nθ = 2π/�θ =24 or 48 (depending on the probe rake utilized) is
the number of azimuthal measurement locations. Consequently, the integral from eq.
(3.4) should be replaced with a finite quadrature form. The finite approximation of
the integral equation (3.4) for 3k-vector ϕ = (ϕu, ϕv, ϕw)T , ϕα = {ϕα(ri; f, m)}k

i =1 can
be written in the following form:

k∑
j=1

Φαβ(ri, rj ; f, m)w(rj )ϕ
(n)
β (rj ; f, m)

rj + rj+1

2
�r = λ(n)(f, m)ϕ(n)

α (ri; f, m), (3.11)

or

ΦαβWϕβ =
λ

�r
ϕα, (3.12)

where the summation is applied on repeated indices and the W-matrix is a weighting

[k × k] matrix, W = [

k-columns︷ ︸︸ ︷
w, . . . , w], where w is a weighting k-vector

w = 0.5r̃(1),

k−2︷ ︸︸ ︷
1 · r̃(2), 1 · r̃(3), . . . , 1 · r̃(Nr − 1), 0.5r̃(Nr )}T (3.13)

where r̃(j ) = 0.5(rj + rj+1), Φαβ = {Φαβ(ri, rj ; f, m)}k,k

i,j=1 is the [k × k] Hermitian

matrix and �r = 6.35 mm is the spacing between probes in the rake. After
multiplication, the ΦW-matrix is no longer Hermitian. We next multiply (3.11) by
W1/2 ( see Glauser et al. 1987) from the left and rearrange to obtain

W1/2ΦαβWϕβ =
(
W1/2ΦαβW

1/2
) (

W1/2ϕβ

)
=

λ

�r

(
W1/2ϕα

)
(3.14)
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or

Φ̃αβ ϕ̃β =
λ

�r
ϕ̃α. (3.15)

Now Φ̃αβ = W1/2ΦαβW
1/2 is a Hermitian matrix with λ/�r and ϕ̃α = W1/2ϕα the

corresponding eigenvalues and eigenvectors, respectively. The matrix equation (3.14)
was solved using a Hermitian matrix solver in Matlab. After a back transformation
ϕα = W−1/2ϕ̃α , a finite set of k orthogonal spatial modes at the discrete spatial points
ϕ(n)

α (ri; f, m) with corresponding eigenspectra λ(n)(f, m) are obtained.

4. Experimental results
In this section experimental results from the implementation of the POD in the

axisymmetric jet are presented. These results are divided into two major categories.
In the first part, the POD eigenmodes and associated eigenspectra are obtained
for streamwise locations ranging from x/D = 3 to 12. These POD modes provide a
structural template for the local, time-mean jet coherent structure in a mixed physical–
Fourier domain. In the second part, the POD modes are projected onto instantaneous
cross-stream flow field realizations obtained via linear stochastic estimation (LSE),
and aspects of the local jet coherent structure dynamics are recovered.

4.1. POD modal energy distribution

Consideration is first given to the rate of energy convergence of the POD modes
with mode number n as expressed through their respective eigenspectra, λ(n)(f, m).
As noted earlier, the eigenspectra provide the modal energy distribution in temporal
frequency f , and azimuthal mode number m, space. Therefore, the kinetic energy in
each POD mode is obtained by summing over all frequencies and azimuthal mode
numbers,

∑
f,m λ(n)(f, m). The energy content in each individual POD mode, Er (n),

relative to the total resolved energy is then given by

Er (n) ≡

∑
f,m

λ(n)(f, m)∑
n

∑
f,m

λ(n)(f, m)
. (4.1)

The cumulative energy, Ec(n), provides a direct measure of the rate of energy
convergence of the POD modes with n and is given by

Ec(n) ≡

n∑
k=1

∑
f,m

λ(k)(f, m)∑
n

∑
f,m

λ(n)(f, m)
. (4.2)

Figure 11 presents both the relative energy content Er and the cumulative energy Ec

of the POD modes at four representative streamwise locations in the jet. At x/D = 3
the first POD mode accounts for approximately 41 % of the total kinetic energy and
this value increases with streamwise distance to 48 % at x/D =12. Examination of
Ec indicates that the first four POD modes account for 84 % of the total kinetic
energy at x/D = 3 and 87 % at x/D = 12. Hence, it is apparent that the rate of energy
convergence with POD mode number is not a strong function of streamwise location.
The rapid energy convergence with mode number at each streamwise location bodes
well for the possibility of developing a low-dimensional description of the turbulent
axisymmetric jet flow field (e.g. Aubry et al. 1988; Ukeiley & Glauser 1995; Taylor,
Ukeiley & Glouser 2001).
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Figure 11. Relative and cumulative energy content of the POD modes at representative
x/D locations.

4.2. POD eigenspectra

Figure 12 presents the streamwise evolution of POD mode n= 1 eigenvalue spectra,
λ(1)(f, m). In this figure, the frequency is expressed as a Strouhal number based
on nozzle diameter, D, and jet exit velocity, Uj . Note that these POD eigenvalue
spectra are derived from the full Φαβ matrix. The POD mode-1 energy content clearly
grows with streamwise distance (note the different ordinate scales used in figure 12).
At x/D = 3, energy is distributed over a wide range of azimuthal mode numbers
but there is a clear tendency for lower azimuthal mode numbers to dominate with
increasing downstream distance. By x/D = 10, figure 12 shows that the peaks at
azimuthal mode numbers m =1 and m =2 dominate the spectrum. The eigenvalue
spectra also indicate that a dominant portion of the fluctuation energy occurs for
StD < 0.5.
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Figure 12. Eigenspectra for the first POD mode in the (StD,m) domain.

Figure 13 presents the streamwise evolution of the POD mode n= 2 eigenvalue
spectra, λ(2)(f, m). This figure indicates that the mode-2 eigenvalue spectra are
dominated by a peak at azimuthal mode m =1 at each streamwise location. As
was the case for mode n= 1, this peak grows in prominence relative to the other
azimuthal modes with streamwise distance.

The eigenvalue spectra of figures 12 and 13 may be integrated with respect to
frequency (or equivalently, StD) in order to more clearly indicate the streamwise
variation in azimuthal-mode energy content of the jet coherent structure. The relative
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Figure 13. Eigenspectra for the second POD mode in the (StD,m) domain.

azimuthal energy distribution, ξ (n)(m), is defined as

ξ (n)(m) ≡

∑
f

λ(n)(f, m)∑
n

∑
m

∑
f

λ(n)(f, m)
. (4.3)

Figure 14 presents the streamwise variation of the azimuthal energy distribution
ξ (n)(m) for POD modes n= 1 and n= 2. This figure shows an initially broad
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Figure 14. Azimuthal mode energy distribution ξ (n)(m) for POD modes n= 1 and n= 2.

distribution of energy over multiple azimuthal modes. The figure also clearly shows
the preferred growth of lower, non-zero azimuthal mode numbers with increasing
streamwise distance. However, the azimuthal mode m = 1 is observed to dominate
both POD modes at all streamwise locations 3 � x/D � 12 and this relative dominance
clearly grows with streamwise distance. In contrast, the axisymmetric mode m = 0
appears neutral, exhibiting negligible streamwise growth or decay

The results shown in figure 14 were obtained from the rake with �θ = 15◦. In
order to assess the degree of spatial aliasing of azimuthal modes, the experiment
was repeated with �θ = 7.5◦. Figure 15 compares ξ (n)(m) for POD modes 1 and
2 as obtained from both experiments. Results are compared at two representative
streamwise locations, x/D = 3 and 6. The comparison shown in figure 15 may be
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Figure 15. Azimuthal mode energy distribution ξ (n)(m) for POD modes n= 1 and n= 2.

considered representative of other streamwise locations. This figure clearly shows
that only comparatively low-energy azimuthal modes m � 7 are significantly aliased.
In fact, the lower, more energetic azimuthal mode distribution of energy is nearly
identical for the two experiments. The aliasing of high azimuthal mode numbers
is observed to be more significant for the x/D =3 location as one would expect.
Figure 15 shows unequivocally that spatial aliasing is not a significant factor in the
streamwise evolution of ξ (n)(m) shown in figure 14. In particular, the dominance of
azimuthal mode m = 1 is not due to azimuthal aliasing.

As noted previously, Citriniti & George (2000) and Jung et al. (2004) utilized
the POD to examine the large-scale structure in the axisymmetric turbulent jet.
Both implementations involved measurement of POD eigenspectra based on only
the streamwise fluctuating component. The eigenspectra presented in figures 12 and
13 result from an implementation of the POD derived from the measurement of
the full Φαβ matrix and, consequently, contain the contribution from all three
fluctuating velocity components. In order to form a basis for comparison with previous
studies, eigenfunctions and corresponding eigenspectra based on only the streamwise
fluctuating component can be obtained from the diagonal element Φuu by means of
a scalar implementation of the POD,∫

Φuu(r, r
′; m, f )ϕ(n)

u (r ′; m, f )r ′ dr ′ = λ(n)
u (m, f )ϕ(n)

u (r; m, f ), (4.4)

where ϕ(n)
u (r; m, f ) and λ(n)

u (m, f ) are the u-component eigenfunction and associated
eigenvalue spectrum, respectively. Similarly, eigenfunctions and corresponding
eigenspectra based on the v and w fluctuating velocity components can be obtained
from equation (4.4) with Φvv and Φww the respective kernels.

For POD modes n= 1 and n= 2, eigenspectra λ(n)
u (m, f ) based on the streamwise

component were obtained and subsequently integrated over all frequencies to obtain
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Figure 16. Comparison of the azimuthal mode number dependence of u-component
eigenspectra with values from Jung et al. (2004).

ξ (n)
u (m), which is defined as

ξ (n)
u (m) ≡

∑
f

λ(n)
u (f, m)df

∑
n

∑
m

∑
f

λ
(n)
u (f, m)df

. (4.5)

The numerator is the integral of the u-component eigenvalue spectrum over all
frequencies and the denominator is the total resolved u-component energy. Figure 16
makes a direct comparison of the azimuthal distribution of energy ξ (n)

u (m) as
determined in this study with corresponding values obtained by Jung et al. (2004). The
comparison is made at several streamwise locations in the near field of the jet. The
results of Jung et al. (2004) were obtained in an axisymmetric jet at ReD = 156 800
as compared to ReD = 380 800 in the current study. The important point to note is
that, despite the disparity in Reynolds number, the agreement in modal distribution
of energy is quite remarkable. Both show a shift of peak energy from m =4, 5
near x/D =3 to lower azimuthal mode numbers with increasing streamwise distance,
and this leads to m =2 dominating beyond the tip of the jet core (x/D = 6). The
favourable agreement in the azimuthal distribution of energy ξ (n)

u (m) shown in figure 16
is consistent with the assertion of Glauser (1987) that once ReD is sufficiently high
then there is little dependence of the modal energy distribution on Reynolds number.
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Figure 16 shows that disparities do occur for the highest mode numbers (m � 7) and
this is clearly a manifestation of the spatial aliasing of higher wavenumber modes
in the current study as established previously in figure 15. Note that for the cases
x/D =3 and 6 shown in figure 16, results from the current study with �θ = 7.5◦ are
included and agree with those of Jung et al. (2004) even at the highest azimuthal
mode numbers. The probe array used by Jung et al. (2004) resolves m � 15.

As shown in figure 16, the largest disparity between the current measurements and
those of Jung et al. (2004) occurs for the axisymmetric mode, m =0. Its modal energy
content is initially quite high in relation to the helical modes in the experiments of Jung
et al. (2004) but decays rapidly with streamwise distance. In the current experiment,
the m =0 mode is at a low level and is essentially neutral, exhibiting virtually no
growth with x/D. This disparity in behaviour is probably associated with differences
in initial conditions between the jet flow field facilities. Indeed, disparities in the
m = 0 mode are also noted in comparing the results of Jung et al. (2004) with those of
Tinney, Glauser & Ukeiley (2005). It is well known that azimuthally coherent acoustic
forcing in any free shear flow facility will influence the initial evolution of the flow
as described in numerous references (e.g. Gutmark & Ho 1983 and Thomas 1991).
Since there is a large disparity between acoustic wavelengths and the wavelength
of the initial shear layer vortical instability, their coupling can occur only at the
receptivity site at the nozzle lip as described by Tam (1986). The nozzle diameter is
invariably small in relation to background acoustic disturbances so that the forcing
of the nascent shear layer is azimuthally coherent and will excite the axisymmetric
mode that is the most unstable mode at the nozzle lip (Cohen & Wygnanski 1987). In
the current study, extraordinary precautions were taken to avoid facility-dependent
acoustic forcing of the nascent jet shear layer (which would be axisymmetric). This
does not appear to be the case in the study by Jung et al. (2004). Consequently, it is
not surprising to observe disparities in the m =0 mode energy content. The key point
to note, however, is that m = 0 is in decay in the measurements of Jung et al. (2004)
and tends towards values similar to those observed in the current experiment.

In order to provide a measure of the relative energy content contributed by each
fluctuating velocity component towards the total kinetic energy of the jet coherent
structure, the ratio ζr (n; α) is defined as,

ζr (n; α) ≡

∑
f,m

λ(n)
α (f, m)

∑
n

∑
α

∑
f,m

λ
(n)
α (f, m)

, (4.6)

where α represents any fluctuating velocity component (u, v, or w). The numerator is
the total modal energy content for a given fluctuating velocity component. This
is normalized by the total energy contained in the u-, v-, and w- component
eigenvalues as obtained from respective scalar implementations of the POD. Hence,
the denominator is a metric that is at least related (but not necessarily equal) to the
total energy of the jet large-scale structure. Figure 17 presents the relative energy
ζr (n; α) for each velocity component versus POD mode number as obtained at two
representative streamwise locations in the jet. The behaviour of ζr (n; α) is not a strong
function of streamwise location and the results presented for x/D = 3 and 8 may be
considered representative. Note that the energy content in the streamwise component
is dominant, followed, in turn, by the azimuthal and radial components. For POD
mode 1 the azimuthal energy content is 53–59 % of that in the streamwise component
while the radial component accounts for 30–36 %. As shown in figure 17, similar
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Figure 17. Relative energy in streamwise, radial and azimuthal components
of the POD modes.

values are also observed for higher POD mode numbers. It is apparent that the sum
of the modal energy contained in the azimuthal and radial fluctuating components is
comparable with that in the streamwise component. Since the azimuthal and radial
components contain significant modal energy relative to the streamwise component,
there is a possibility of losing flow physics by neglecting the v and w-components and
this provides one motivation for the vector implementation of the POD presented in
this paper. Finally, the rapid energy convergence with mode number is noted, which
is consistent with the results presented previously in figure 11.

Eigenspectra based on the w fluctuating velocity component were obtained from
equation (4.4) with Φww the kernel. The eigenspectra λ(n)

w (m, f ) were subsequently
integrated over all frequencies to obtain ξ (n)

w (m). Figure 18 presents ξ (n)
w (m) for POD

modes n= 1 and n= 2, at representative streamwise locations in the near field of
the jet. The streamwise variation in the azimuthal distribution of energy for the w-
component is distinctly different from that previously presented for the u-component.
In particular, azimuthal mode m = 1 is observed to be dominant at each streamwise
location. At x/D = 6, for example, figure 16 shows the dominance of azimuthal mode
m =2 for the u-component while figure 18 shows the dominance of m =1 for the
w-component. Note that in figure 18 results from experiments with both �θ = 15◦

and θ =7.5◦ are included for x/D = 3 and 6. Note again that the variation of ξ (n)
w (m)

is virtually identical for the dominant mode numbers indicating that they are not
influenced by spatial aliasing.

In a similar manner, figure 19 presents ξ (n)
v (m) at representative x/D locations

in the jet near field as derived from eigenspectra λ(n)
v (m, f ). This figure shows that

the v-component is initially dominated by the axisymmetric mode m =0. Only with
increased x/D does the m =1 mode gradually become comparable to the m =0 mode.
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Figure 20. POD mode-1 eigenspectra for azimuthal mode number m= 1.

4.3. Strouhal number dependence of the POD eigenspectra

Figure 20 presents POD mode n= 1 eigenspectra for azimuthal mode m =1 as
obtained at several streamwise locations throughout the near field of the jet. The
abscissa is Strouhal number, StD (based on the jet exit velocity, Uj , and the nozzle
diameter, D). The eigenspectra of figure 20 each feature a broad peak and the StD
associated with this peak decreases with x/D in a continuous manner as shown in
the inset diagram of the figure.

The local temporal frequency associated with a particular convected POD mode
is proportional to the convective speed of the structure past the fixed measurement
location and inversely proportional to a local characteristic length scale associated
with the structure. The convective speed will be some fraction of the local jet centreline
velocity, Umax . Upstream of the jet potential core, it is reasonable to expect the relevant
local length scale to be related to a characteristic axisymmetric shear-layer length scale
like the local momentum thickness, θ . Figure 21(a) presents the same eigenspectra
as shown in figure 20 but with the frequency scaled in terms of Strouhal number
Stθ = f θ/Umax . In order to properly emphasize the spectral peak, the eigenspectra
are equivalently presented by plotting the product Stθ ∗ λ(1)(Stθ ; m =1) versus Stθ on
a logarithmic abscissa. This figure clearly shows that the peaks in the eigenvalue
spectra occur at a constant value of Stθ ≈ 0.035. This scaling of the eigenspectra peak
with Stθ is consistent with the notion that the large-scale structure represented by the
POD is a manifestation of modes of instability of the axisymmetric jet shear layer.

Figure 21(b) presents similar results for the POD mode n= 2, m =1 eigenspectra
where Stθ ∗ λ(2)(Stθ ; m =1) is also presented as a function of log(Stθ ). Again, for
locations upstream and near the tip of the jet core, the eigenspectra peaks occur at a
constant Stθ ≈ 0.036 which is nearly the same value as noted for λ(1)(Stθ ; m = 1). Note
that the scaling of the spectral peak with Stθ breaks down beyond the jet potential
core as would be expected.
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Figure 21. POD mode-1 and -2 eigenspectra for azimuthal mode number m= 1.

The scaling of the peaks in the eigenspectra with Stθ is not restricted to the
azimuthal mode m =1. For example, figure 22 presents similarly scaled eigenspectra,
λ(1)(Stθ ; m =2). As before, for x/D locations upstream and near the tip of the jet
core, there is a well-defined spectral peak which occurs at constant Stθ ; in this case
Stθ ≈ 0.025. This figure serves to illustrate the general finding that higher azimuthal
mode numbers are associated with lower Stθ values at peak amplitude. For example,
although not shown, it was found that the peak in the eigenspectra λ(1)(Stθ ; m =0)
occurred at a constant Stθ ≈ 0.048.

Figure 22 also illustrates the breakdown in the scaling of the spectral peak with
constant Stθ that occurs beyond the tip of the jet core.

The StD values associated with local maxima in λ(1)(StD, m =1) (as shown in the
inset of figure 20) are considerably lower than the measured jet column mode shown
in the autospectra of figure 7. Indeed, peaks associated with λ(1)(StD, m =2) occur at
even lower StD values. At first sight this seems puzzling since the centreline spectra
show maximum energy near StD = 0.4 and yet the most energetic helical POD modes
are associated with lower StD . Resolution of this issue comes from examination of the
eigenspectra associated with the axisymmetric mode, λ(n)(StD, m =0). These are found
to exhibit spectral peaks in the vicinity of the tip of the jet core at StD ≈ 0.44, thereby
matching the jet column mode. In this sense, the jet column mode of instability is
actually a superposition of POD modes with m =0.
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Figure 23. POD mode-1 eigenfunction modulus for indicated azimuthal mode numbers and
x/D locations: �, x/D = 4; �, represent x/D = 6; ∗, x/D = 8.

4.4. POD eigenmode shape

Figure 23 presents the modulus of the POD mode-1 eigenfunction, |ϕ(1)(r/b; m, Stθ )|,
as a function of cross-stream coordinate r/b at representative streamwise locations
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x/D =4, 6, and 8, respectively. In each case the value of Stθ corresponds to that
associated with the local maximum in the associated eigenvalue spectrum (e.g.
figure 21). The eigenmode shape is presented for several selected representative
azimuthal mode numbers in figure 23. It can be seen that the cross-stream variation
of |ϕ(1)(r/b; m, Stθ )| is distinctly different for axisymmetric and helical modes. For
instance, at each x/D location, the axisymmetric mode (m =0) exhibits two maxima:
a primary one on the jet centreline and a smaller one near r/b = 1.1. In contrast, the
helical modes each exhibit a minimum on the jet centreline and a single maximum
in the jet shear layer. While the exact r/b location of the maximum depends on the
azimuthal mode number, all are located on the high-speed side of the shear layer
(r/b � 1).

4.5. POD eigenmode projection onto instantaneous local flow field realizations

Each of the POD modes is known only up to an arbitrary factor of phase. This
follows from the fact that the integration in (3.4) is performed in the r-direction with
StD and m as parameters. In general, the PODmodes are ambiguous in phase for
all homogeneous directions, as described in Lumley (1970). The phase information
required for a local reconstruction of the flow structure can be restored by the
projection of the POD modes onto instantaneous flow field realizations uα(r, θ, t)
obtained at selected streamwise stations. One approach to doing this would be to use
a technique similar to that employed by Citriniti & George (2000) in the axisymmetric
shear layer. This method utilized a large array of 138 single sensor probes in the
plane x/D =3 to capture the instantaneous streamwise-component flow. However,
this was impractical for the acquisition of multi-component realizations of interest
in this study. Instead, the approach to be described below uses the complementary
technique developed by Bonnet et al. (1994) in which linear stochastic estimation
(LSE) provides the required instantaneous flow field realizations with a sparse array
of multi-sensor probes. In particular, the effective interpolation provided by LSE is
used to reduce the required number of X-wire probes in the inhomogeneous radial
direction. This is similar to the approach taken by Gordeyev & Thomas (2002) in
their investigation of large-scale structure in the planar turbulent jet.

4.5.1. Linear stochastic estimation

The LSE method, first proposed by Adrian (1977, 1979), estimates a flow field
u(x, t) conditioned upon knowledge of the flow u′ ≡ u(x ′, t ′) at some selected points
in space and/or time. For a comprehensive review of the implementation of LSE
in turbulent flow the reader is referred to Adrian (1994). Application of the LSE
to obtain instantaneous realizations of the flow in the similarity region of a planar
turbulent jet for the purpose of POD eigenmode projection is described in some detail
by Gordeyev & Thomas (2002).

In the axisymmetric jet the instantaneous local flow field is estimated by utilizing
a sparse cross-stream (r, θ) array of 16 X-wire probes. The location of the probes
in the crossflow plane is shown schematically in figure 24. As indicated, there are
four probes located at r = 6.35 mm, separated azimuthally by 90◦, and twelve probes
located at r =25.4 mm, separated azimuthally by 30◦. The innermost radial position
corresponds to 0.22 � r/b � 0.18 over the streamwise range 3 � x/D � 8, respectively.
Similarly, the outermost radial location corresponds to 0.9 � r/b � 0.7 over the same
streamwise range. Such an arrangement allows resolution of azimuthal modes up to
m = 6 as well as capturing structure near the centre of the jet. The probe sensors were
oriented so as to simultaneously measure either the instantaneous (u, v) or (u, w)
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Figure 24. Schematic of the measurement grid for the instantaneous flow field measurement
for POD projection. Filled circle indicates the probe location.

velocity components. By inserting an additional probe at any given (r, θ) location in
the crossflow plane, the ability of LSE to capture the local instantaneous flow field
at the corresponding position could be directly assessed. Comparison of numerous
sample velocity time-series obtained by direct measurement and by LSE interpolation
revealed good agreement. The r.m.s. computed from a given LSE interpolated signal
was, in the worst case, within 90 % of the corresponding directly measured value.
Representative sample time-series obtained vie LSE interpolation and by direct hot-
wire measurement are compared in figure 25.

4.5.2. Method of POD mode projection

The procedure that was used for POD mode projection may be described in the
following seven steps:

(a) The Fourier transform in time of the measured velocity fluctuation is calculated,
ûα(r

′, θ, f ) = FT {uα(r
′, θ, t)} .

(b) Using the LSE method, the velocity field is estimated at all (r, θ)-locations that

are marked by the unfilled circles in figure 24: ûα(r
′; θ, f ) −→ ˜̂uα(r; θ, f ). Here the

linear stochastic estimation is denoted by ∼.

(c) The spatial Fourier transform in the θ-direction is performed, ˜̂uα(r; θ, f ) −→˜̂uα(r; m, f ).
(d) Using the orthogonality property of the POD modes, the POD coefficients (in

Fourier space) a(n)(m, f ) can be computed by projecting the PODmodes onto an
instantaneous realization,

a(n)(m, f ) =

∫ ˜̂uα(r, m, f )ϕ(n)∗
α (r; m, f )r dr. (4.7)

(e) The Fourier transform of each POD mode can be restored,

˜̂u(n)

α (r, m, f ) = a(n)(m, f )ϕ(n)
α (r, m, f ). (4.8)
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Figure 25. Comparison of the streamwise fluctuating velocity component computed from
LSE with that directly measured at (a) x/D = 3, r/b = 1.12, (b) x/D = 6, r/b = 1.02.

(f) An inverse Fourier transform in time and the θ-direction provides the POD
mode in physical space,

u(n)
α (r, θ, t) =FT −1

{˜̂u(n)

α (r, m, f )
}

. (4.9)

(g) The fluctuating flow field is then the sum of all POD modes,

uα (r, θ, t) =

∞∑
n=1

u(n)
α (r, θ, t). (4.10)

In the sections that follow, results are presented from projections of POD mode 1
onto instantaneous two-component local realizations involving either the measured
(u, v) or (u, w) velocity fluctuation time-series in local crossflow (r − θ) planes.

4.5.3. POD mode 1, u-component projections

As noted previously, local POD mode-1 projections using only the streamwise
fluctuating component have been presented by both Jung et al. (2004) and Citriniti &
George (2000). In order to form a basis for comparison with these previous studies,
projections of the first POD eigenmode onto the two-component instantaneous flow in
local crossflow planes will be presented in this section. These were obtained at several
representative x/D locations in the near field of the jet. Results for the streamwise
component were obtained by projection of POD mode 1 onto either local (u, v) or
(u, w) time-series. In general, u-component projections from both approaches exhibit
similar dynamics. The u-component projections to be presented in this section are
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based upon a two-component implementation utilizing (u, v) time-series and may be
considered as representative of the other cases as well.

Based on the POD mode-1 projection, animations showing the dynamic behaviour
of the u-component velocity in the (r, θ)-plane were obtained. In these animations,
the instantaneous streamwise velocity associated with POD mode 1 is presented as a
surface in the local (r, θ)-plane. Averages over multiple sequential animation frames
gave a null result indicating no preferred azimuthal direction (as expected from a
properly designed experiment).

Figure 26 presents representative sample frames obtained from the animations
at x/D = 3, 5 and 7. This figure also serves to illustrate the streamwise evolution
in azimuthal mode content of the POD mode-1 u-component fluctuations. The
animation frames show that peak fluctuations tend to occur on the high-speed side
of the shear layer just inside r/b = 1. In general, the animation frames at a given x/D

location show a complex pattern indicating the presence of multiple azimuthal modes,
and this pattern exhibits significant temporal variation. However, examination of a
given sequence of frames indicated that certain azimuthal modes would occur more
frequently at a given streamwise location. These preferred azimuthal modes are shown
in figure 26. For example, consistent with figure 16, most frames at x/D = 3 indicate
significant azimuthal mode content for m =4,5 and 6. The sample frame in figure 26
clearly shows the presence of azimuthal mode 5 at x/D = 3. Similarly, frames shown in
figure 26 for x/D = 5 reveal the dominance of azimuthal mode m = 3. It is apparent
that the higher azimuthal mode content that characterized upstream locations is
gone. This reduction in preferred azimuthal mode number with streamwise distance
continues, as shown in the sample frames obtained at x/D = 7 which clearly show
the presence of azimuthal mode 2. In general, these local u-component projections
confirm the change in azimuthal mode content of the first POD mode with streamwise
distance observed in figure 16 but also show that significant temporal variation occurs
at each streamwise location.

From their projection of POD mode 1 on the streamwise component, both Citriniti
& George (2000) and Jung et al. (2004) observed an energetic transient event that
they characterize as a ‘volcano-like’ eruption of the jet core flow. The eruption forces
high-velocity fluid through the centre of the jet while an azimuthal mode m = 6
structure appears and is sustained outside the jet core. This behaviour was also
observed in the current experiment. In particular, POD mode-1 animations obtained
at x/D = 3 intermittently showed the occurrence of these events. While these events
are relatively common at x/D = 3, they occurred much less frequently at x/D = 4
and are virtually non-existent by x/D =5. Hence they appear associated with the
axisymmetric shear layer development well upstream of the tip of the jet potential
core. It appears likely that this event may actually be a manifestation of the localized
pairing of axisymmetric jet shear layer vortices with the azimuthal m =6 structure
associated with streamwise braids connecting primary toroidal shear layer vortices.
More evidence of this topology will be presented in the discussion section of the
paper.

4.5.4. POD mode 1, w-component projections

From the projection of POD mode 1 onto local two-component (u, w) realizations,
animations of the azimuthal w-component fluctuations in local (r, θ) crossflow planes
were obtained at several representative x/D locations. As was the case for the
u-component, these are presented as surfaces in the local (r, θ)-plane. Figure 27
presents representative sample frames obtained from w-component animations at
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Figure 26. Two sample POD mode-1 u-component realizations at representative x/D
locations.

x/D =3, 5 and 7. Examination of the w-component frames revealed the presence of
multiple azimuthal mode content and considerable local temporal variation. However,
consistent with the w-component azimuthal mode energy distributions shown in
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Figure 27. Two sample POD mode-1 w-component realizations at representative x/D
locations.

figure 18, the animation frames show the strong presence of azimuthal mode m = 1
at each x/D location. Note that, in each of the sample frames shown in figure 27,
although there is clearly multiple azimuthal mode content, azimuthal mode m =1 is
quite prominent. That is, the w-component fluctuation has a strong antisymmetric
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component. Figure 27 shows that the dominance of mode m = 1 relative to the other
azimuthal modes clearly grows with streamwise distance.

The demonstrated dominance of azimuthal mode m =1 for the POD mode-1,
w-component combined with its very significant energy content in relation to the
u-component (as shown in figure 17) may explain why the vector implementation of
the POD shows the local dominance of azimuthal mode m =1 in contradiction to
scalar implementations that utilize only the u-component.

4.5.5. POD mode 1, v-component projections

Projection of POD mode 1 onto local two-component (u, v) realizations provided
animations of the v-component in local (r, θ) crossflow planes. These were obtained
at several x/D locations throughout the near field of the jet. As was the case for
the w-component, the radial fluctuating component of POD mode 1 is presented as
a surface in local (r, θ)-planes. Examination of the resulting v-component animation
frames demonstrates a predominantly axisymmetric character of the v-component
initially. This is clearly shown in figure 28 which presents sample frames obtained at
x/D =3, 5 and 7. Note the dominance of azimuthal mode m = 0 for x/D = 3 and 5.
The axisymmetric character of the POD mode-1 v-component motions is gradually
lost with increased x/D. Beyond the tip of the jet core the azimuthal content of
the v-component fluctuations becomes dominated by m =1. This is clearly seen in
the two frames obtained at x/D = 7 shown in figure 28. The results of figure 28
are consistent with the v-component azimuthal mode energy distributions shown
previously in figure 19.

The v-component motions associated with the previously described eruption of the
jet core flow observed in u-component animations at x/D = 3 were examined. This
showed that in the first stage of this transient event, the v-component motions are
directed radially inward, which leads to the streamwise accelerated core flow. Near
the end of the event, the radial component is clearly directed primarily outward.
As suggested by figure 19, these POD mode-1 v-component motions appear to be
axisymmetric in nature at x/D = 3.

5. Discussion
The POD eigenvalue spectra resulting from the three-component implementation

of the POD (figure 12) exhibit a remarkable variation over the streamwise range
3 < x/D < 12. In particular, energy is initially distributed rather broadly over a
wide range of resolved azimuthal mode numbers, m, and for StD < 0.5. However,
the experiments clearly demonstrate the preferred growth of lower azimuthal mode
numbers with increasing streamwise distance, particularly azimuthal modes m =1
and 2. In contrast, the axisymmetric mode m =0 is neutral. When integrated with
respect to Strouhal number (temporal frequency), it becomes clear that azimuthal
mode m =1 is actually dominant at each x/D location for both POD modes 1 and
2. The dominance of the m =1 mode relative to other azimuthal modes grows with
streamwise distance. This result is consistent with results of linear stability theory
applied to the local mean velocity profile (e.g. Cohen & Wygnanski 1987). In order
to rule out the possibility of the spatial aliasing of azimuthal modes, the experiments
were repeated at twice the azimuthal resolution (�θ = 7.5◦) which allowed azimuthal
modes m =0 . . . 23 to be resolved. Comparison with the original experiments showed
excellent agreement for the most energetic azimuthal modes that form the focus of
this paper. Only modes m � 7 exhibited spatial aliasing. Hence, it is conclusively
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Figure 28. Two sample POD mode 1, v-component realizations at representative x/D
locations.

demonstrated that the dominance of the m =1 azimuthal mode in the near field of
the jet is not related to spatial aliasing.

During the preparation of a revised version of this paper, the authors became
aware of a vector implementation of the POD in the far field of the axisymmetric
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jet (x/D =60, 70 and 100) by Wänström, Geore & Meyer. This study, which utilized
stereo particle image velocimetry, clearly showed the dominance of azimuthal mode
m = 1 in the far field of the jet, consistent with the results of this study.

The scalar implementation of the POD (using only the u-component) by Jung et al.
(2004) demonstrated the dominance of azimuthal mode m = 2 beyond the tip of the
jet core and even into the jet far field. This result does not contradict the results of
the current study. As shown in figure 16, an equivalent scalar POD implementation
utilizing only the diagonal component Φuu of the cross-spectral tensor is in excellent
agreement with the experimental results of Jung et al. (2004) in terms of the locally
dominant azimuthal mode numbers. Hence, the scalar u-component implementation
of the POD in this study also shows the dominance of azimuthal mode m = 2 beyond
the tip of the jet core. This comparison also reveals that the azimuthal grid resolution
used in the current study is sufficient to faithfully capture the dominant azimuthal
modes. Only comparatively low-energy azimuthal modes m � 7 are aliased.

Similar scalar implementations of the POD utilizing either the azimuthal, w,
or radial, v, velocity components were performed and these show quite different
distributions of energy with azimuthal mode number. For example, the azimuthal
component shows the dominance of mode m =1 throughout the initial region of the
jet. In contrast, the radial component is initially primarily axisymmetric: m =0 with
the first helical mode m = 1 becoming significant only near the tip of the jet core.

The energy content of the azimuthal and radial components of the POD modes
is shown to be quite significant in relation to the streamwise component energy. For
example, for POD mode 1, the energy in the azimuthal component varies from 53 %
to 59 % of that in the streamwise component (depending on the streamwise location).
Similarly, the radial component accounts for 30–36 %.

The demonstrated dominance of azimuthal mode m = 1 for the w-component POD
modes 1 and 2, combined with their significant energy content in relation to the
u-component may explain why the vector implementation of the POD shows the
dominance of azimuthal mode m =1 in the near field of the jet in contradiction to
scalar implementations of the POD that utilize only the u-component.

The POD eigenvalue spectra each exhibit a broad spectral peak that is found
to occur at a constant value of Stθ for a given azimuthal mode number, m. For
fixed azimuthal mode number m, the value of Stθ associated with the eigenvalue
spectral peak is constant irrespective of POD mode number, n. However, higher
azimuthal mode numbers are associated with lower values of Stθ at peak amplitude.
For example, azimuthal modes m =0, 1, 2, 3 correspond to eigenvalue spectral peaks
at Stθ = 0.048, 0.035, 0.025, 0.013, respectively (independent of POD mode number).
Note that these values of Stθ vary linearly with azimuthal mode number. The scaling
of eigenspectra peaks with constant Stθ is consistent with the notion that the dominant
POD modes are a manifestation of modes of instability of the turbulent axisymmetric
shear layer. The scaling of the eigenvalue spectra with Stθ breaks down for streamwise
locations downstream of the jet core as one would expect. Presumably, scaling
eignespectra peak frequencies by the local jet mean velocity half-width and maximum
velocity would lead to a constant Strouhal number as in the planar jet study by
Gordeyev & Thomas (2000), although this far-field behaviour was not investigated
in the current study.

The POD eigenmode-1 cross-stream shape functions are distinctly different for
axisymmetric and helical modes. The axisymmetric mode possesses a maximum on
the jet centreline and a smaller peak near the centre of the jet shear layer. In contrast,
the helical modes possess zero amplitude on the jet centreline and a single peak



318 M. O. Iqbal and F. O. Thomas

located on the high-speed side of the jet shear layer (r/b < 1). The peak cross-stream
location depends on the azimuthal mode number.

Projection of POD mode 1 onto two-component instantaneous realizations of the
flow, (either (u, w) or (u, v)), obtained in local (r, θ) crossflow planes allows the
local dynamic behaviour of the jet coherent structure to be examined. The local
instantaneous realizations were obtained by using the complementary technique of
Bonnet et al. (1994). Projections of POD mode 1 were found to exhibit considerable
temporal variation in azimuthal mode content at a given streamwise location. In
general, the azimuthal mode content of a given animation frame typically involved
multiple modes. Examination of the sequence of frames at a given x/D location clearly
revealed that certain azimuthal modes were ‘preferred’ in terms of both frequency of
occurrence and amplitude. Several example frames showing local preferred azimuthal
modes have been presented in this paper. Examination of the animation frames make
it clear that modes m = 5, 6 more typically dominate the POD mode-1 u-component
near x/D = 3 and that mode m =2 tends to dominate farther downstream with a
gradual variation at locations in between. The observed dynamic behaviour associated
with the u-component was similar whether based on the (u, v) or (u, w) projections.

Based on projection of POD mode 1 onto instantaneous (u, w) time series, the
azimuthal POD mode-1 motions were examined. Examination of the w-component
frames revealed the strong presence of azimuthal mode m =1 at each x/D location.
That is, although there is temporal variation and multiple azimuthal mode content in
the frame sequence, the POD mode-1,w-component fluctuation possesses a strong
antisymmetric component. This observation is consistent with the w-component
azimuthal mode energy distributions shown in figure 18. The v-component (radial)
POD mode-1 motions were found to be primarily axisymmetric in nature at locations
upstream of the tip of the jet potential core. The v-component POD mode-1 motion
was also found to play a key role as a precursor of intermittent core flow acceleration
events, first noted by Citriniti & George (2000). For streamwise locations closer to
the end of the jet core, the azimuthal symmetry in the v-component motions is lost
and animation frames clearly show the presence of azimuthal mode m =1.

In order to correctly compute the phase coefficient a(n)(m, f ) in equation (4.7), the
u-, v- and w-components must be acquired simultaneously. Unfortunately the X-wires
provide only simultaneous (u, v) or (u, w) velocity fluctuation time-series (depending
on their orientation in the flow). Neglect of one of the velocity components will result
in lost phase information since a(n)(m, f ) = a(n)

u (m, f ) + a(n)
v (m, f ) + a(n)

w (m, f ) where

a(n)
α (m, f ) =

∫ ˜̂uα(r, m, f )ϕ(n)∗
α (r; m, f )r dr (no summation on α). (5.1)

In order to gauge the loss of phase information associated with the neglect of either
a(n)

v (m, f ) or a(n)
w (m, f ), the ratios of the norms of the phase coefficients, |a(n)

v |/|a(n)
u |

and |a(n)
w |/|a(n)

u |, for the first POD mode were computed from the two groups of
measurements, (u, v) and (u, w). Figure 29 shows a comparison of the ratios |a(1)

v |/|a(1)
u |

and |a(1)
w |/|a(1)

u | for the dominant azimuthal mode numbers m =1 and m =2 at two
representative streamwise stations. For the range of Strouhal number (0 � StD � 0.5)
at x/D = 3, the size of |a(1)

w |/|a(1)
u | is greater by at least a factor 3 than |a(1)

v |/|a(1)
u |. This

difference increases with streamwise distance as is apparent from figure 29(b). Hence,
this result suggests that if a velocity component must be neglected, then neglect of
a(n)

v (m, f ) will yield minimum error in the reconstruction of the flow field mode-1
coherent structure in physical space. This is particularly true for x/D locations near
and beyond the tip of the jet core.
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It is common to use a triple decomposition of the velocity field in order to account
for the presence of coherent structure in the flow (e.g. Hussain 1986),

u = Ū + uls + ufs (5.2)

where Ū is the mean velocity, uls represents the large-scale structure and ufs is the fine-
scale, phase incoherent turbulence. In a similar manner, the resolved flow structure
in the axisymmetric jet may be represented as a summation of the dominant POD
modes,

uresolved =

N∑
n=1

u(n). (5.3)

Since the focus is on the large-scale motions, those that do not contribute to the
cross-spectral tensor, uunresolved, are considered ‘fine-scale’ and are neglected. In this
sense, the term fine-scale is intimately related to the resolution of the measurements.
The large-scale flow structure can then be represented as a series consisting of the
sum of the mean flow Ū and N POD modes u(n). Note that the mean flow is time
independent and is thus orthogonal to the POD modes. Motivated by the rapid
energy convergence demonstrated by the POD eigenvalues, as a first approximation
to the large-scale jet structure we have

ustruc = Ū(r) + u(1). (5.4)

Further, owing to the results shown in both figures 17 and 29, the u- and w-
component POD modes are used to reconstruct the jet large-scale structure. Since, we
are interested in only the most basic aspect of the jet large-scale structure topology,
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the error in neglecting the v-component would hardly alter its principal shape. Only
for comparative purposes at the most upstream x/D location is a reconstruction
presented utilizing the u- and v- components.

An approximation is made that the flow is effectively parallel in the streamwise
direction at the x/D locations where the POD mode projections are made. The local
reconstructions of the flow are presented in a frame of reference convecting with
the structure. Hence, we present the structure in a frame of reference moving with
convective speed, Uc = 0.6Um which is approximately independent of r . In a frame
of reference moving downstream at speed Uc, new variables are then defined as
x → x − Uct , r → r , θ → θ , and u → u − Uc. One way to present the resulting flow
structure would be to simply present the velocity field, u − Uc, as a function of r, θ

and pseudo-spatial streamwise coordinate, x = −Uct . Instead of this approach, the
large-scale structure will be visualized by means of the so-called −λ2 surface which
Jeong & Hussain (1995) have shown to be an objective criterion for eddy structure
identification (not to be confused with the notation used in the current paper for
POD eigenvalue). This technique is based on the detection of local pressure minima
associated with vortex cores.

Figure 30 presents sample flow field reconstructions obtained at x/D = 3 based
on both (u, v) and (u, w) POD mode-1 projections. In each case the −λ2 = 3 %-of-
maximum iso-surface is used to visualize the underlying large-scale flow structure in
the convected frame of reference. By selectively filtering the azimuthal mode numbers
m included in the realizations, one can investigate the underlying flow topology
involved. In figure 30(a), both of the (u, w) realizations are identical but different
azimuthal mode filtering has been applied. Similarly, the pair of (u, v) realizations in
figure 30(b) are identical. Both of the realizations on the right-hand side of the figure
include only the azimuthal modes m =0 and m =5. These clearly show the presence
of a sequence of toroidal shear-layer vortices. The m = 5 structure is associated with
streamwise vortical braids that appear to connect these primary shear layer vortices.
The (u, v)-based structural realization shown on the right of figure 30(b) also shows
two axisymmetric vortices that have just undergone merging.

On the left hand side of figure 30 the reconstructions are filtered to include
only azimuthal modes m = 0 and m =1. These show that even at x/D =3, the
jet is beginning to develop an underlying helical vortical structure. It was found
that, consistent with the v- and w-component azimuthal mode energy distributions
shown previously in figures 19 and 18, respectively, the (u, w)-component-based flow
reconstructions more clearly showed the helical structure in the jet.

Figure 31 presents local flow field reconstructions base upon the (u, w)-components
only. Again, the −λ2 = 3 % of-maximum iso-surface is used to visualize the underlying
structure. At this x/D location the jet coherent structure is now dominated by a helical
vortex. Shown in figure 31 is a realization filtered first to include only mode m =1 and
then both azimuthal modes m =1 and m = 2. The underlying helical vortical structure
is readily apparent. Examination of numerous realizations revealed no preferred
orientation for the helical structures (i.e. right- and left-handed were equally likely).
Although not shown here, filtering the flow to include the axisymmetric and higher
azimuthal modes (like those shown in figure 30) revealed little in the way of organized
large-scale structure at this location.

The helical large-scale structure in the axisymmetric jet that is observed in figure 31
is found to persist beyond the tip of the jet core. Figure 32 shows a similar sample
(u, w)-based flow field reconstruction obtained at x/D = 6. The azimuthal mode
filtering is the same as that employed in figure 31. This clearly shows that the local jet
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Figure 30. −λ2 surface at x/D = 3 obtained from the projection of the first POD mode.

coherent structure topology beyond the tip of the jet core is dominated by a helical
vortex structure. This structure was found to persist to the last measurement station
examined in this study and was dominated by azimuthal mode m =1.
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Appendix A. Temporal and spatial aliasing concerns
The acquired velocity time-series data are discrete in both time and space so careful

consideration must be given in order to minimize temporal and spatial aliasing.
Avoidance of temporal aliasing is straightforward and is considered first. Using a
conventional single-sensor hot-wire probe, autospectral density measurements were
obtained in the jet at various radial and streamwise locations at a Nyquist frequency
of 50 kHz. As an example, figure 33 presents autospectra of the streamwise fluctuating
velocity component obtained at x/D = 3 for several radial positions in the jet shear
layer. From this figure (and similar measurements that are not presented here) it can
be seen that most of the fluctuation energy is contained in a frequency band below
10 kHz although the frequency bandwidth does extend to approximately 20 kHz.
This indicates that the velocity fluctuations should be sampled at 40 kHz or greater in
order to avoid temporal aliasing. However, since the focus of this experiment is on the
extraction of large-scale structure in the flow which is investigated via cross-spectral
methods, it will be demonstrated that a much lower sampling frequency combined
with the use of analogue anti-alias filters offers the best approach.

The cross-spectral measurements in this study were obtained at a sampling
frequency of 20 kHz. Converged cross-spectral density functions Sαα(r, r

′; f ) obtained
with a sampling frequency of 20 kHz at various locations in the jet show that
significant correlation is actually restricted to a much lower frequency band. As
an example figures 34 and 35 present |Suu(r = b, r ′; StD)|, |Svv(r = b, r ′; StD)| and
|Sww(r = b, r ′; StD)| obtained for b/5 � r ′ � 7b/5 at the two representative streamwise
locations x/D = 3 and 6, respectively. Note that in each case there is virtually no
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spectral coherence for frequencies StD > 1, where StD =1 corresponds to a temporal
frequency of approximately f = 2.2 kHz. This indicates that spatially coherent
structures in the near field of the axisymmetric jet lie at comparatively low frequencies.
Therefore, the use of a 10 kHz Nyquist frequency combined with analogue anti-alias
filters will both prevent temporal aliasing and provide more than sufficient bandwidth
for the two-point cross-spectral measurements.

For the initial POD experiments, the measurement grid was equally spaced in
the azimuthal direction with a �θ =15◦ (see figure 9). This corresponded to a
resolved azimuthal mode number range of m =0 . . . 11. Of course, if there are higher
azimuthal modes present in the flow, these can be aliased to lower m. In order
to assess this, the entire experiment was repeated with �θ = 7.5◦ giving a resolved
azimuthal mode number range of m =0 . . . 23. Comparison of the results from the
two experiments provides a direct assessment of the degree of spatial aliasing of
azimuthal modes. Results from the two experiments are shown in figure 15, which
compares the azimuthal mode energy distribution ξ (n)(m) for POD modes 1 and 2
as obtained from both experiments. The results are compared at two representative
streamwise locations, x/D = 3 and 6. The comparison shown in figure 15 may be
considered representative of other streamwise locations as well. This figure clearly
shows that only comparatively low-energy azimuthal modes m � 7 are significantly
aliased. In fact, the lower, more energetic, azimuthal mode distribution of energy is
nearly identical for the two experiments.

The radial coordinate is inhomogeneous and in this direction the flow is expanded
in terms of POD eigenfunctions rather than Fourier modes. However, in order to
assess the correlated length scales resolved by the rake in the radial direction, it
is useful to temporarily think in terms of Fourier modes. To this end, two-point
cross-spectra, Suu(r = 0, r ′; StD), were computed between two single-sensor probes;
one probe was fixed at the centre of the jet (r = 0) and the other was movable in the
radial direction r ′ with a small, fixed increment (�r = 1.25mm). Thus, the minimum
spacing between probes was approximately 1/5 of the value that was actually used
in the POD measurements. The cross-spectral tensor for the streamwise fluctuating
velocity component Suu is computed for the movable probe positions 0<r ′ < 1. A
spatial Fourier transform of the resulting cross-spectra yields

Xuu(kr, r
′, StD) =

∫
Suu(r, r

′, StD)e−ikr r
′
dr ′. (A 1)

where kr is a wavenumber in the radial direction. Of particular interest is the value
of |Xuu(kr, r

′, StD)|2 as a function of krb for a representative range of frequencies (not
presented here). These show that all significant lateral correlation of streamwise fluctu-
ations occurs for krb < 11.5 at x/D =3 and for krb < 9 at x/D = 6. This implies that the
length scale in the radial direction associated with significant correlation is λr � 0.55b

at x/D =3 and λr � 0.7b at x/D =6. The fixed probe spacing used for the POD
measurements (�r = 6.35 mm) corresponds to maximum resolved radial wavenumber
krb = 14.2 at x/D = 3 and krb = 15.4 at x/D = 6. Hence, at all streamwise locations
investigated, the fixed radial probe spacing used for the POD measurements is capable
of resolving the radially coherent motions associated with the jet large-scale structure.
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